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Abstract

This study addresses the problem of Alzheimer’s disease (AD) diagnosis with Electroen-

cephalography (EEG). The use of EEG as a tool for AD diagnosis has been widely studied

by comparing EEG signals of AD patients only to those of healthy subjects. By contrast, we

perform automated EEG diagnosis in a differential diagnosis context using a new database,

acquired in clinical conditions, which contains EEG data of 169 patients: subjective cognitive

impairment (SCI) patients, mild cognitive impairment (MCI) patients, possible Alzheimer’s

disease (AD) patients, and patients with other pathologies. We show that two EEG features,

namely epoch-based entropy (a measure of signal complexity) and bump modeling (a mea-

sure of synchrony) are sufficient for efficient discrimination between these groups. We stud-

ied the performance of our methodology for the automatic discrimination of possible AD

patients from SCI patients and from patients with MCI or other pathologies. A classification

accuracy of 91.6% (specificity = 100%, sensitivity = 87.8%) was obtained when discriminat-

ing SCI patients from possible AD patients and 81.8% to 88.8% accuracy was obtained for

the 3-class classification of SCI, possible AD and other patients.

Introduction

Dementia is a major public health issue worldwide. The impact on aging population grows at

an alarming rate: the number of people living with dementia today is estimated at 46.8 mil-

lions, and expected to double by 2030 and triple by 2050 [1]. Alzheimer’s disease is the most

common form of neurodegenerative dementia, accounting for up to 75% of all dementia cases;

it is a growing challenge to public health and the health care systems.

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by a

decline in memory, language and other cognitive functions that affect a person’s ability to
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perform daily activities. The evolution of the disease frequently follows five stages. The “pre-

clinical” stage is asymptomatic, but the brain lesions of Alzheimer’s disease are present. In the

subgroup of preclinical stage, the concept of subjective cognitive decline/impairment (SCI)

has been proposed recently, defined by a self-experienced persistent decline in cognitive capac-

ity in comparison with a previously normal status and with normal age-, gender- and educa-

tion-adjusted performance on cognitive tests [2]. These subjective complaints are considered

as a risk factor for AD [3]. In the second stage (“Mild Cognitive Impairment”–MCI), patients

have some memory impairments, but maintain their functional capacities [4,5]; 6% to 25% of

MCI patients later develop Alzheimer’s dementia. Then, in the “Mild” stage of Alzheimer’s

dementia (MMSE>20), cognitive deficits are notable such as memory and learning impair-

ments, which become more severe in the “Moderate AD” stage (MMSE between 10 and 20). In

the final “severe” stage of the disease, almost all cognitive and motor functions are deeply dete-

riorated and patients are completely dependent on caregivers [6]. The average duration of sur-

vival of Alzheimer’s disease patients is 5–8 years after clinical diagnosis [7,8]. Currently, no

known medication exists for curing this pathology, but some therapeutic treatments at the

early stage might delay the evolution of the disease [9,10]. Therefore, an early diagnosis of Alz-

heimer’s disease in MCI and Mild AD stages becomes an important issue for the scientific and

medical community.

Medical diagnosis of Alzheimer’s disease is hard, particularly at the early stage of the dis-

ease, mainly because symptoms are often dismissed as normal consequences of ageing. In

addition, other pathologies (e.g. dementia with Lewy bodies, fronto-temporal dementia, and

vascular dementia) share some symptoms with Alzheimer’s disease at the early stage. To diag-

nose Alzheimer’s disease, extensive tests are required to eliminate all other possible causes.

These tests include comprehensive neuropsychological evaluations, neurological examination,

blood tests, brain imaging techniques and spinal fluid analysis if needed [11]. Diagnosis of Alz-

heimer’s disease by non-invasive and inexpensive techniques will allow dispensing better care

to patients.

In the last years, the potential use of electroencephalography (EEG) for diagnosing demen-

tia pathologies, and in particular Alzheimer’s disease has been extensively investigated [12–

19]. EEG is a non-invasive, relatively inexpensive, and potentially mobile technology with high

temporal resolution (on the order of milliseconds). It was mainly investigated as a tool for AD

diagnosis, by comparing EEG recordings of AD patients only to those of control subjects

(healthy subjects) [12,13,15,17,18].

It is widely admitted that Alzheimer’s disease leads to a reduction in the complexity of EEG

signals and changes in EEG synchrony. These modifications in EEG recordings have been

used as discriminative features for AD diagnosis. Several methods were developed for assessing

the complexity of EEG signals. The correlation dimension and the first positive Lyapunov

exponent were frequently used [20–25]. It was found that EEG signals from AD patients

exhibit lower values of such measures (lower complexity) than signals from age-matched con-

trol subjects. Other information-theoretic methods, entropy-based approaches in particular,

have emerged as potentially useful EEG markers of Alzheimer’s disease: epoch-based entropy

[26,27], sample entropy [28], Tsallis entropy [29], approximate entropy [30,31], multi-scale

entropy [32], and Lempel-Ziv complexity [33]. These methods link the complexity of a signal

to its unpredictability: irregular signals are more complex than regular ones since they are

more unpredictable.

Since Alzheimer’s disease is hypothesized to induce functional disconnection between

brain regions, other studies focused on detecting the changes in the synchrony between pairs

of EEG signals. A large variety of measures has been developed to quantify EEG synchrony:

correlation coefficient [34], coherence [34–36], Granger causality [34,37], phase synchrony
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[34,38,39], state space based synchrony [34,38,40], stochastic event synchrony [34,36,39,41,42]

and mutual information [43]. All these studies reported decreased EEG synchrony in MCI and

AD patients compared to healthy subjects.

To discriminate AD patients from healthy subjects, all the above-mentioned studies ana-

lyzed the EEG signals either in the time domain or in specific standard frequency bands: 0.1–

4Hz (delta band), 4–8Hz (theta band), 8–12Hz (alpha band), 12–30Hz (beta band) and 30–

100Hz (gamma band) [23,44], or in the whole frequency range between 4 and 30Hz [34]. Spec-

tral analysis studies reported that Alzheimer’s disease induces increased activity in the delta

and theta frequency bands, as well as decreased activity in the alpha and beta bands [19,45–

48]. Also, reduced spectral coherence between the two hemispheres was shown between alpha

and beta frequency bands [14,49–52]. These spectral differences were also shown to be corre-

lated with the severity of the disease [14,53,54]. Moreover, alpha rhythms are usually distrib-

uted in the occipital area for healthy subjects; in AD patients, they increasingly move towards

anterior areas as the disease progresses [45,55,56]. Early stages of Alzheimer’s disease have

been associated with an increase of theta activity and/or a decrease of alpha activity. In more

severe stages of Alzheimer’s disease, an increase of both theta and delta activities has been

observed together with a decrease of both alpha and beta activities, additionally to a reduction

in the amplitude of the peak of alpha frequency band [57,58]. In all these studies, a 70%-85%

correct detection rate is commonly achieved for different degrees of disease severity.

By contrast to all the above-mentioned investigations, the present study takes advantage of a

database containing EEG data acquired from different patients in real clinical conditions. This

database contains EEG data from patients with subjective cognitive impairment (SCI), possible

AD patients (DSM IV definition), MCI patients and patients suffering from other pathologies,

such as vascular dementia, psychosis, Lewy body dementia, and non neurodegenerative disor-

ders (alcoholism, cerebral vascularitis, cerebellar abscess. . .). To the best of our knowledge, this

is the first report of automatic discrimination, from EEG data, between SCI, MCI, and Mild to

moderate possible AD patients. A similar work in the literature in terms of the exploited cohort

is that of Liedorp et al. [59]. The authors used a large memory clinic database that contains EEG

data of subjective memory complaints patients, MCI patients, AD patients, and patients with

other dementias (psychiatric disorders, vascular dementia (VaD), fronto-temporal dementia,

and Lewy bodies (DLB)). However, the authors investigated focal and diffuse abnormalities in

different cognitive profiles of the database, based on a visual EEG assessment.

In the present work, both AD diagnosis and differential AD diagnosis are investigated. In

the first case, possible AD patients are discriminated from SCI patients (AD diagnosis) only.

In the second case, SCI patients and possible AD patients are discriminated from patients with

MCI or other pathologies. The experiments involve the use of two features: an entropy-based

complexity measure [26,27] and a synchrony measure [60,61], both computed in different fre-

quency ranges and for different brain regions. The most relevant measures and the most rele-

vant frequency range are selected with the Orthogonal Forward Regression (OFR) algorithm

and the random probe method [62–64] to improve the accuracy of EEG classification using a

Support Vector Machine classifier (SVM) [65,66].

Material and methods

Database description and pre-processing

The database was recorded in real clinical conditions between 2009 and 2013 at Charles-Foix

Hospital (Ivry-sur-Seine, France). The EEG recordings were obtained at rest and with closed

eyes using a Deltamed digital EEG acquisition system for a minimum of 20 minutes. Scalp elec-

trodes were placed according to the modified International 10–20 system with 11 additional
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electrodes in a common reference montage using a sampling rate of 256 Hz. Thirty electrodes

were placed on the scalp (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC7, FC4, FT8, T3, C3, Cz, C4,

T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, O2).

The patients who complained of memory impairment were referred to the outpatient mem-

ory clinic of the Charles-Foix Hospital where they underwent a battery of tests for brain disor-

ders, including neuropsychological test, brain imaging and blood samplings. Patients with

epilepsy were excluded. Each patient was given a diagnosis at the memory clinic on the basis of

the clinical, brain imaging, psychometric findings, and discussions held by a multidisciplinary

medical team, using the standard diagnostic criteria: DSM-IV, NINDS, Jessen criteria for SCI,

Mc Keith criteria for Lewy body dementia [2,3,67]. We didn’t use EEG recordings to establish

the diagnosis. This retrospective study was approved by the local ethical committee of the Uni-

versity Pierre and Marie Curie Paris 6. The database reflects what medical practitioners are fac-

ing in reality, as opposed to databases used in the literature [24,27,29,34–39] that are prone to

experimental constraints that do not match the reality on the ground.

The database contains EEG data of 169 patients (mean age 75±11.2 years old, range 42–97

years old; 110 women). These patients are described in the Table 1.

For each subject, continuous epochs of 20 seconds, free from artifacts, were selected manu-

ally. They were then band-pass filtered with a third-order digital Butterworth filter between 1

and 30Hz.

Methodology

The purpose of this study is to develop a method that consists in: (i) discriminating automati-

cally possible AD patients from patients who came to the hospital with cognitive complaint

but with normal age-, gender -and education-adjusted performance on cognitive tests i.e. SCI

patients (AD diagnosis); (ii) discriminating automatically possible AD patients from SCI

patients and patients with MCI or other pathologies (differential AD diagnosis).

For AD diagnosis experiments, only two groups were considered: the 22 SCI patients and

the 49 possible AD patients. For differential AD diagnosis, two cases were investigated. In the

first case, three groups were considered: the first group contained the 22 SCI patients (SCI

patients); the second group contained the 49 AD patients (AD patients), and the third group

Table 1. Clinical characteristics of the cohort. AD: Alzheimer’s disease; aMCI: amnestic MCI; oMCI: other MCI; SCI: subjective cognitive impairment; BZD:

benzodiazepine.

SCI

(n = 22)

MCI (n = 58) AD (n = 49) Other pathologies (n = 40)

SCI

(n = 22)

aMCI

(n = 6)

oMCI

(n = 52)

AD

(n = 28)

Mixed

(n = 21)

Lewy body

dementia (n = 3)

Psychosis

(n = 13)

Vascular

dementia (n = 9)

Non neuro-degenerative

disorders (n = 15)

Age Years old

(mean ±SD)

68.9±10.3 74.5±12.7 75.2±10.8 80.8±10.5 81.6± 7.3 76.0±6.1 64.1±12.5 79.3±6.3 70.1±11.1

Gender : female N

(%)

18

(81,8%)

3 (50%) 32 (61,5%) 19

(67,8%)

11 (52,4%) 3 (100%) 11 (84,6%) 4 (44,4%) 9 (60%)

Education year

MMSE (mean ±SD) 28.3±1.6 28.2±1.2 24.5±4.9 18.3±6.1 17.9±7.0 16±5.6 23.8±3.3 21.9±5.2 18.4±7.0

BZD use N (%) 4 (18.2%) 1 (16.7%) 5 (9.6%) 8 (28.6%) 9 (42.8%) 0 4 (30.8%) 2 (22.2%) 7 (46.7%)

Antidepressant use

N (%)

2 (9%) 1 (16.7%) 10 (19.2%) 12

(42.8%)

13 (61.9%) 1 (33.3%) 4 (30.8%) 2 (22.2%) 6 (40%)

Neuroleptic use N

(%)

0 0 2 (3.8%) 5 (17.8%) 3 (14.3%) 1 (33.3%) 1 (7.7%) 1 (11.1%) 3 (20%)

hypnotic use N (%) 5 (22.7%) 1 (16.7%) 12 (23.1%) 7 (25%) 6 (28.6%) 0 2 (15.4%) 0 5 (23.8%)

https://doi.org/10.1371/journal.pone.0193607.t001
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contained all the remaining 98 patients with MCI or other pathologies (Other patients). In the

second case of differential AD diagnosis, additionally to the three groups defined in the latter

case, a fourth group was defined by separating the 58 MCI patients (MCI patients) from the 40

patients with other pathologies (Other pathologies). Note that the “Other patients” group in

the first case and “Other pathologies” group in the second case are heterogeneous and contain

patients with variable EEG signatures.

The proposed method exploits two EEG features: epoch-based entropy, which is a measure

of signal complexity, and bump models, which quantify the EEG local synchrony. Both fea-

tures are computed in different brain regions and in the four EEG frequency bands. The most

relevant brain regions and frequency ranges are selected with the Orthogonal Forward Regres-

sion (OFR) algorithm [63,64] using a leave-one-subject-out cross-validation procedure and

the random probe method [62]. The selected features are subsequently fed to a polynomial

SVM classifier [65,66].

EEG features

As mentioned above, epoch-based entropy and bump modeling were used for extracting rele-

vant features from the EEG signal. These two measures have been reviewed earlier in [27,60].

A brief description is presented in the next two subsections.

Epoch-based entropy measure. Epoch-based entropy measure was introduced in [26,27]

as a complexity measure for early screening of Alzheimer’s disease. The reliability of this mea-

sure stems from the fact that it estimates the complexity of EEG signals not only locally over

time (as classical complexity measures do), but also spatially by estimating the inter-channel

complexity.

The measure is computed on piecewise stationary epochs of EEG signal using a Hidden

Markov Model (HMM) [68], which performs a local density estimation at the epoch level.

As in our previous studies [27], EEG signals are modeled by a continuous left-to-right

HMM (Fig 1). The states of the HMM correspond to the stationary parts of the EEG sig-

nal, and the transitions of the HMM correspond to the variations of the signal. The EEG

signal recorded from a given subject is thus considered as a succession of epochs, obtained

by segmenting the signal by the Viterbi algorithm [68] using the corresponding subject’s

HMM. Thus, each obtained epoch corresponds to a state of the HMM and contains a

given number of observations (sample points). For each epoch Si, the probability density

function is modeled by a mixture of M Gaussian functions; each multivariate Gaussian

has a diagonal covariance matrix (Fig 1).

Then each observation z in a given epoch Si is considered as a realization Zi of a random

variable Z that follows a given observation probability distribution Pi(z) modeled by the Gauss-

ian mixture. Consequently, each stationary epoch of the signal is associated to a random vari-

able, and the entropyH�(Zi) of the epoch Si is that of an ensemble of realizations of Zi:

H�ðZiÞ ¼ �
P

z2Si
PiðzÞ:log

2
PiðzÞ ð1Þ

By averaging the entropy over the N epochs of the EEG signal of the subject, an entropy-based

complexity value EpEn(Z) of the signal, called “epoch-based entropy”, is obtained as:

EpEn Zð Þ ¼
1

N

XN

i¼1

H�ðZiÞ ð2Þ

To model the inter-relations between EEG time series recorded from D electrodes, an

HMM is trained for each subject on a set of D EEG signals recorded from D electrodes. At

Differential Alzheimer’s disease diagnosis
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time t, a hidden state emits a D-dimensional observation vector. By applying the Viterbi algo-

rithm, each EEG signal is segmented into N epochs, and the entropy H�(Zi) of each epoch Si is

computed considering the probability density estimated by the HMM on the observations of

the D epochs (Fig 1).

Although all N epochs are matched between EEG channels, the model does not constrain

these epochs to be of equal length for all channels. Finally, by averaging the entropy over all

theN epochs, an epoch-based entropy value associated to the multi-channel EEG of the subject

is computed.

Bump models. Signal features can be extracted from time-frequency maps by means of

sparse bump models [60]; those models consist of time-frequency patterns (“bumps”), last-

ing roughly 4 time periods centered at a specific frequency. The bump modeling approach

allows capturing oscillatory events in EEG on a trial-by-trial basis, which in turn may be

considered as reliable characteristic signatures in Local Field Potentials and EEG signals

[61]. Those patterns are likely to be representative of transient local synchronization of neu-

ronal assemblies, conveying key information on high-order cognitive and sensory

processing.

Fig 1. Illustration of multi-channel (N = 4, D = 2) EEG signal modeling with HMM.

https://doi.org/10.1371/journal.pone.0193607.g001
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Wavelet time-frequency maps are computed using complex Morlet wavelets. The (continu-

ous) wavelet transform W of a time series x is obtained as:

W k; sð Þ≜
X

l

x lð ÞC� l � k
s

� �

ð3Þ

where C(k) is the mother’ wavelet, s is a scaling factor, and � stands for complex conjugate. In

this paper, we use the complex Morlet wavelet:

C kð Þ ¼ A:exp
� k2

2s2
t

� �

:expð2ipf0kÞ ð4Þ

where s2
t and f0 jointly determine the number of oscillations in the wavelet. The complex Mor-

let wavelet family defined by 2iπf0k = 7 results in the optimal resolution in time and frequency;

it has also proven to be suitable for EEG signals [58].

Oscillatory events (“bumps”) are extracted from the time-frequency maps using sparse

bump modeling [69]. This procedure is described in more detail below.

Frequency-dependent z-score normalization [61,69] was applied to each trial:

z f ; tð Þ ¼
Wðf ; tÞ � mf

sf
ð5Þ

where μf and σf are the mean and the standard deviation respectively of the wavelet map W.

The resulting z-score maps z(f,t) are approximated by bump models zbumps, which are

sequences of basis functions b (“bumps”) with parameters θk:

zðf ; tÞ � zbumpsðyÞ ¼
XNb

k¼1

bðykÞ ð6Þ

with y ¼ ðy1; y2; . . . ; yNbÞ. This approximation retains the most salient oscillatory events in the

z-scored map z(f,t). As pointed out earlier, we hypothesize that those events are characteristic

for EEG dynamics, and are therefore relevant for diagnosing Alzheimer’s disease. In the pres-

ent study, following [60,69], the basis functions b(.) were half ellipsoids, and the parameters θk
were vectors of five parameters: position in time and frequency, width in time and frequency,

and amplitude.

Classification

Multi-class probabilistic SVM classifiers. This study involves a multi-class database con-

taining four groups of patients: SCI patients, AD patients, MCI patients and patients with

other pathologies. We are thus facing a K-class classification problem that was turned into a

set of K(K − 1)/2 two-class problems [70].

To distinguish between each pair of classes, a polynomial SVM classifier with a margin

calibration is used to overcome the issue of unbalanced datasets [71]. Therefore K(K − 1)/

2 two-class SVM classifiers are trained in order to estimate pairwise posterior probabili-

ties. The SVM outputs were mapped to posterior probabilities using Platt’s estimation

method [72]. The global probability that an observation (a patient) described by the

Differential Alzheimer’s disease diagnosis
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feature vector x, belongs to class Ci is computed as:

PrðCi=xÞ ¼ 1=
XK

j ¼ 1

j 6¼ i

1

Prij
� ðK � 2Þ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð7Þ

where K is the number of classes and Prij is the probability of the observation belonging to the class

i, estimated by the SVM classifier separating class Ci from class Cj.
Feature selection. Epoch-based entropy and bump models features are computed on dif-

ferent frequency bands and on different brain regions. This leads to a large number of candi-

date input features to the SVM classifiers. Since the study also involves a multi-class problem,

feature selection was performed to determine which features, among the candidate features,

are the most relevant for discriminating each pair of classes. To rank the candidate features in

order of decreasing relevance, we used the Orthogonal Forward Regression (OFR) algorithm

[63,64] with a leave-one-subject-out cross-validation procedure, summarized as follows:

1. Select the candidate feature fi that best correlates to the output to be modeled;

2. Project the output vector onto the null space of the selected feature. Orthogonalize the rest

of features using Gram-Schmidt orthogonalization;

3. Remove the selected feature fi from the list of candidate features;

4. Return to (1) until termination by the random probe method described below.

In order to select the features, we applied the random probe method [62]: 100 probes, i.e.

random realizations of features, are generated, concatenated to the set of real data, and all fea-

tures (real and probe) are ranked as described above. The user defines an acceptable risk that a

feature might be kept although, given the available data, it might be less relevant than the

probe. At each step of the selection procedure, the following steps are performed:

1. Obtain a candidate feature from OFR;

2. Estimate the value of the cumulative distribution function of the rank of the probe for the

rank of the candidate feature. If the value is smaller than the acceptable risk, keep the fea-

ture and return to step 2 of OFR; otherwise, discard the considered feature and terminate

the procedure.

Experimental results

For all 169 subjects, epoch-based entropy and bump models were computed in different fre-

quency bands and for different brain regions. On the basis of the results reported in the litera-

ture on Alzheimer’s disease detection with EEG, 16 features were considered as primary

candidate variables: 7 features related to epoch-based entropy (EpEn) and 9 features related to

bump models (BM), as reported in Table 2. The squared primary variables were considered as

secondary variables in order to take into account possible non-linearities, so that the total

number of candidate features was 32.

AD diagnosis

AD diagnosis consists in discriminating SCI subjects (22 in the database) from AD subjects

(49 in the database). As mentioned above, 32 candidate features were computed for each

Differential Alzheimer’s disease diagnosis
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subject. Feature selection was performed using OFR algorithm with a leave-one-subject-out

cross-validation procedure, as described in Section 2.4.2. Random variables (probes) were

added to the feature set and only variables that ranked better than 90% of the probe were kept

for classification. Therefore, the selected features are, in order of decreasing relevance:

a) EpEn computed on all electrodes, in the [8–12] Hz band,

b) EpEn computed on the Temporal region, in the [8–30] Hz band,

c) BM computed on the Frontal region, in the [4–8] Hz band,

d) EpEn computed on all electrodes, in the [8–30] Hz band,

e) EpEn computed on the Frontal + Occipital region, in the [8–30] Hz band.

This result shows that almost all selected features are related to the complexity measure,

namely Epoch-based entropy (EpEn). Also, the optimal range on which EEG signal is the most

informative for AD screening is 8 to 30Hz (alpha and beta bands).

For further analysis, Fig 2 shows the box plots of features values obtained on SCI sub-

jects and AD patients considering only the features that best discriminate these two groups.

Fig 2A, Fig 2B, Fig 2D and Fig 2E show that AD patients have lower median values of

epoch-based entropy than control subjects. This result is consistent with the literature:

EEG signals from AD patients exhibit lower complexity values than age-matched control

subjects in almost all channels [23,24,27,28]. In addition, Fig 2C indicates an increased

EEG synchrony in the theta band for AD patients compared to SCI subjects. This result is

consistent with previously published studies: AD induces an increased activity in the theta

band [12,43,46]. It is interesting to point out that these results are still valid although the

control subjects of this database are not healthy subjects since they have some memory

complaints.

The selected features are subsequently used as inputs to a second-degree polynomial SVM

classifier with soft margin. The performance of the SVM classifier was estimated by leave-one-

subject-out cross-validation, which is known to provide an unbiased estimation of the general-

ization error [73]. Due to the small size of the database, the generalization error was not esti-

mated on separate test data. Results of the classification showed that a correct classification

rate of 91.6% is reached when discriminating SCI subjects from AD patients, with a specificity

(proportion of well classified SCI patients) of 100% and a sensitivity (proportion of well classi-

fied AD patients) of 87.8%.

This result demonstrates the reliability of the used features and the proposed method for

detecting Alzheimer’s disease. The result also shows a very good detection of SCI subjects with

a specificity of 100% despite the fact that SCI subjects are not totally healthy subjects since they

have some memory complaints.

Table 2. The computed epoch-based entropy and bump model features for each subject.

Epoch-based entropy (EpEn) Brain regions

All electrodes Temporal (left and right) Frontal+Occipital

Frequency range (Hz) 1–4 ; 4–8 ; 8–12 ; 12–30 ; 8–30 8–30 8–30

Bump models (BM) Brain regions

Frontal Occipital Temporal (left and right)

Frequency range (Hz) 4–8 ; 8–12 ; 12–30 4–8 ; 8–12 ; 12–30 4–8 ; 8–12 ; 12–30

https://doi.org/10.1371/journal.pone.0193607.t002
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Differential AD diagnosis with three groups of patients

For differential AD diagnosis, the 169 subjects of the database were first organized into three

groups: group 1 contains the 22 SCI subjects, group 2 contains the 49 AD patients, and group

3 contains the other 98 patients (with MCI or other pathologies).

Feature selection was performed on the 32 candidate features described in Table 2, in order

to find the most relevant features for pairwise discrimination of the three groups. Table 3

shows the selected features for discriminating SCI from AD patients, SCI from “Other”

patients, and AD from “Other” patients. The superscript indicates the order of the feature as

ranked by OFR (“a” corresponds to rank 1, “b” to rank 2, etc).

Table 3 shows that the majority of selected features are related to the complexity measure.

Moreover, the optimal range on which EEG signal is more relevant for AD diagnosis is from 8

to 30Hz (alpha and beta bands).

Fig 2. Box plots of the best features discriminating SCI patients from AD patients. The figures follow the ranking in order of decreasing

relevance: (a) EpEn on all electrodes [8–12] Hz; (b) EpEn on temporal region [8–30] Hz; (c) BM on Frontal region [4–8] Hz; (d) EpEn on all

electrodes [8–30] Hz; (e) EpEn on frontal + occipital region [8–30] Hz.

https://doi.org/10.1371/journal.pone.0193607.g002

Table 3. Best combination of features for discriminating SCI patients from AD patients (SCI vs. AD), SCI patients from those with MCI or other pathologies (SCI

vs. Other), and AD patients from those with MCI or other pathologies (AD vs. Other).

Selected features Epoch-based entropy Bump Models

All electrodes Temporal (left and right) Frontal + Occipital Frontal Temporal (left and right)

SCI vs. AD [8–12]a [8–30]d [8–30]b [8–30]e [4–8]c -

SCI vs. Other [8–12]a [12–30]c - [8–30]d [8–12]b [8–12]e

AD vs. Other [8–12]f [12–30]d [8–30]b [8–30]a [8–30]c [12–30]g [12–30]e

a-g indicate the order of the feature as ranked by OFR (“a” corresponds to rank 1, “b” to rank 2, etc)

https://doi.org/10.1371/journal.pone.0193607.t003
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A larger number of features is necessary for discriminating AD from “Other” patients than

for discriminating SCI from AD and SCI from “Other” patients. This fact reflects the difficulty

of detecting AD patients from patients with pathologies that share symptoms with AD.

For further analysis, we present in Fig 3 the box plots of the 7 features values that best dis-

criminate the 49 AD patients from the 98 patients with MCI or other pathologies.

Possible AD patients show a decreased EEG synchrony in the beta frequency range for both

temporal (Fig 3E) and frontal (Fig 3G) regions. The Mann-Whitney test indicates that there is

a significant difference (p<0.001) between the distribution of features of EEG signals of AD

patients and the distribution of features of EEG signals of “Other” patients; this demonstrates

the potential of the employed synchrony measure for detecting loss in EEG synchrony caused

by Alzheimer’s disease.

In terms of complexity values, two behaviors appear in the alpha and beta ranges depending

on the brain region:

(i) For EEG channels of all brain regions (Fig 3B and Fig 3D), it clearly appears that Alzhei-

mer’s disease induces a reduction in complexity compared to the other pathologies.

There is a significant difference (p<1e-6) between the distributions of features of the

two populations;

(ii) For the temporal brain region (Fig 3A), EEG signals are more complex for AD patients

than for the patients with MCI or other pathologies (p<1e-4).

The selected features are used as inputs of the corresponding three SVM classifiers associ-

ated to the three discriminations (SCI vs. AD, SCI vs. Other, AD vs. Other). The probabilistic

outputs of the SVM classifiers are used to estimate the posterior probabilities of the classes

Fig 3. Box plots of the most relevant features for discriminating possible AD patients from “Other” patients (patients with MCI or other

pathologies). Figures follow the same order given by the OFR algorithm as noted in Table 3: (a) EpEn on Temporal region [8–30] Hz; (b) EpEn on

all electrodes [8–30] Hz; (c) EpEn on Frontal + Occipital region [8–30] Hz; (d) EpEn on all electrodes [12–30] Hz; (e) BM on Temporal region [12–

30] Hz; (f) EpEn on all electrodes [8–12] Hz; (g) BM on Frontal region [12–30] Hz.

https://doi.org/10.1371/journal.pone.0193607.g003
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following the procedure described in section 2.4.1. The classification performances estimated

by leave-one-subject-out cross-validation are presented in Table 4.

First, Table 4 shows that the proposed methodology leads to a high rate of correct classifica-

tion of the subjects, higher than 82% (see the diagonal of the confusion matrix). Moreover, the

detection rates are almost equivalent for the three groups (81.8% to 88.8%); this reflects the

tradeoff made by our methodology between EEG specificity and EEG sensitivity for classifying

the three groups.

Almost 82% of SCI patients are correctly detected, and no SCI patient (0%) was misclassi-

fied as AD patient. However, almost 18% of SCI patients were detected as patients with MCI

or other pathologies. This result might be due to the fact that 59.2% of the 98 remaining

patients of the database are MCI patients, which are very close to the SCI patients. This

hypothesis is confirmed in section 3.3 below.

Table 4 also shows that 87.8% of AD patients are well detected. Among the remaining mis-

classified AD patients, two thirds are detected as SCI subjects (8.2%) and one third as suffering

from MCI or other pathologies (4.1%). For the “Other” patients, 88.8% of them are well

detected, and among the misclassified patients, half of them are considered as AD patients, the

others as SCI patients.

For further analysis, we studied the effect of age on AD diagnosis as an etiological factor. To

this end, we added age to the set of initial candidate variables and performed feature selection

as described in Section 2.4.2. As a result, age was selected only for discrimination of SCI vs.

AD, and not selected for SCI vs. Other and AD vs. Other, and the overall classification perfor-

mance was found to decrease.

As a final test, the selected features for SCI vs. AD, without considering age in the set of ini-

tial candidates, were orthogonalized with respect to the vector of ages using Gram-Schmidt

orthogonalization, thereby generating a new set of features that were decorrelated from age;

these features were input to a new SVM classifier. The classification performance was found to

be the same as obtained previously. This shows that the information on age present implicitly

in the features had no influence on the classification results.

The results of the above two numerical experiments on age show that, for the differential

diagnostics of interest in the present study, and given the available data, age is not a relevant

factor.

Differential AD diagnosis with four groups of patients

In the present subsection, the group including patients with MCI and other pathologies is split

into two distinct groups: “MCI” group and “Other pathologies” group. The same procedure

was used as in Section 3.2: pairwise classification between the groups was performed by 6 SVM

classifiers, after feature selection. The performance was estimated by leave-one-subject-out

cross-validation.

The results showed that for discriminating the 6 pairs of groups, EEG analysis should be

carried out on the frequency range of 4–30 Hz. In contrast to the previous sections, where, in

almost all cases, only the alpha and beta ranges were taken into account, the theta band is

Table 4. Confusion matrix for differential AD diagnosis with three groups of patients.

Three groups SCI patients AD patients Other patients

SCI patients 81.8% 0% 18.2%

AD patients 8.2% 87.8% 4.1%

Other patients 6.1% 5.1% 88.8%

https://doi.org/10.1371/journal.pone.0193607.t004
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additionally considered. We also found that only one feature was selected for distinguishing

MCI patients from the patients with other pathologies. This encourages the use of other fea-

tures for better characterizing MCI patients.

The results of the classification of the four groups are shown in Table 5 in terms of confu-

sion matrix. We first observe on the diagonal of the confusion matrix, that 82% of SCI patients

and almost 90% of AD patients are well detected. However, we notice the difficulty in detecting

MCI patients (60.4%) and patients with other pathologies (45%).

Moreover, the misclassified SCI patients are all classified as MCI patients. This result con-

firms our hypothesis stated in Section 3.2: SCI patients in the database suffer from memory

complaints, which makes them similar to MCI patients based on our EEG descriptors. This

result is particularly interesting in the framework of AD diagnosis, since this is the first EEG

study, to the best of our knowledge, where SCI patients are discriminated from MCI and Mild

AD patients: usually, MCI and Mild AD patients are discriminated from healthy subjects.

The results show that the present features are not very efficient for discriminating MCI

patients from patients with other pathologies: only 60.3% of MCI patients are well detected,

and among the misclassified MCI, 70% of them are considered as patients with other

pathologies.

Since these four groups contain mixed patients with different impairments, we report in

Table 6 the distribution of the misclassified patients in each group to give insight into the

results.

When analyzing the distribution of the misclassified patients in Table 6, we observe that:

a) the only AD patient associated to “Other pathologies” group has a mixed AD (AD with

other pathology).

b) the 5 misclassified aMCI patients (among the 6 existing in the database) are associated to

AD group and “Other pathologies” group. This result comforts the fact that amnestic

form of MCI predicts the progression to neurodegenerative disease.

c) three misclassified MCI patients are associated to SCI group and two others are associ-

ated to AD group and “Other pathologies” group. Compared to amnestic MCI, the other

forms of MCI are more confused with SCI subjects.

d) among the 21 misclassified patients from “Other pathologies” group, 19 patients are con-

sidered as MCI patients. The only patient from “Other pathologies” group considered as

SCI subject has a vascular dementia. Also, two patients with Lewy body dementia

Table 5. Confusion matrix for differential AD diagnosis with four groups of patients.

Four groups SCI AD MCI Other pathologies

SCI 81.8% 0% 18.2% 0%

AD 6.1% 89.8% 2.0% 2.0%

MCI 5.2% 6.9% 60.3% 27.6%

Other pathologies 2.5% 5% 47.5% 45%

https://doi.org/10.1371/journal.pone.0193607.t005

Table 6. Distribution of the misclassified patients in the four groups. Refer to Table 1 that describes the cohort in details.

SCI MCI AD Other pathologies

Among the 49 patients of AD group: 5 are misclassified 2 AD 1 mixed AD 1 AD / 1 mixed AD

Among the 58 patients of MCI group: 23 are misclassified 3 MCI / 3 aMCI 1 MCI 2 aMCI 14 MCI

Among the 40 patients with Other pathologies: 22 are misclassified 1 vascular 5 vascular 9 non disorder 5 psychosis 2 Lewy /

https://doi.org/10.1371/journal.pone.0193607.t006
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(among the 3 existing in the database) are considered as AD patients. This result reflects

that our selected features couldn’t differentiate between Alzheimer’s dementia and Lewy

body dementia.

Discussion and conclusion

In clinical practice, medical doctors have to discriminate patients suffering from Alzheimer’s

disease from persons suffering from other types of dementia, or MCI, or from patients with

subjective cognitive impairment. Alzheimer’s disease (AD) is consequently sometimes difficult

to diagnose and discriminate from these pathologies, without using cerebrospinal fluid (CSF)

biomarkers or single-photon emission computerized tomography (SPECT-scan).

Misdiagnosed patients suffer from unsuitable medical care, and have a societal cost. For

instance, patients suffering from vascular dementia with prior AD diagnosis use substantially

more medical services every year until their dementia diagnosis, resulting in incremental

annual medical costs of approximately $9,500-$14,000 [74].

It is widely admitted that EEG is potentially very useful for AD diagnosis. Nevertheless,

state-of-the-art publications have three limitations. First, most publications report studies con-

ducted on small databases, of around 20 persons, containing EEG signals from only age-

matched healthy subjects and from patients affected by Alzheimer’s disease. Second, the meth-

ods advocated for EEG-based AD diagnosis tend to have low specificity, hence poor detection

of healthy subjects [58,75]. Third, for all these studies, the accuracy of AD diagnosis is not eval-

uated in a differential diagnosis context with respect to other pathologies.

The present study overcomes the above limitations, by analyzing a large database contain-

ing EEG data recorded in different pathologies, in real clinical conditions. In addition to AD

and MCI patients, we considered patients with different pathologies, and SCI patients who

joined the study with a suspicion of neurodegenerative disorder, but were diagnosed as not

suffering from any objective cognitive deficit. To the best of our knowledge, no study so far

has been carried out on AD diagnosis in a differential diagnosis context based on an automatic

discrimination from EEG data.

In our framework, two tasks were performed in the present study: (i) discriminating AD

patients from SCI patients (AD diagnosis); (ii) discriminating AD patients from patients

affected by other pathologies (differential AD diagnosis). Based on measures of synchrony and

complexity, we discriminated AD patients from SCI patients with high specificity, and dis-

criminated AD patients from patients with other pathologies. The classifiers are Support Vec-

tor Machines, with feature selection by the random probe method; performance estimation is

performed by leave-one-subject-out cross-validation.

We obtained a high accuracy for the classification of SCI vs. AD patients (91.6% accuracy,

100% specificity and 87.8% sensitivity). To the best of our knowledge, this is the first report of

AD vs. SCI automatic classification based on EEG analysis. Knowing that the only reliable AD

diagnosis is achieved by a post-mortem analysis of the brain [9], a reasonable goal was to reach

an 85~90% accuracy. Recent scientific studies in the field of AD diagnosis reported high accu-

racy in classification tasks comparing AD patients and aged-matched healthy controls

[12,13,15,17,18,24,27]. Our results are in the same order of accuracy as these studies–despite

the fact that SCI patients, as opposed to control healthy subjects, may suffer from biological

degradations [76,77].

In addition, by discriminating AD, SCI and Other patients including MCI, we showed that

the classification accuracies remained similar for a three-group classification (81.8% to 88.8%

accuracies). Thus our method provides a good tradeoff between specificity and sensitivity for

the three groups. When analyzing the selected features for classification, our study reveals that
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Alzheimer’s disease induces a reduction of EEG complexity and an increase of EEG synchrony

in the theta band, compared to SCI patients, considered in this work as control subjects. This

is important, since it shows that the results of the literature on AD screening remain valid

when comparing AD patients to SCI patients.

Finally, when splitting the “Other” group into “MCI” group and “Other pathologies” group

(Section 3.3), all misclassified SCI patients were classified as MCI, which might be the conse-

quence of the similarities between SCI patients and MCI patients: it has been shown that a pro-

portion of SCI patients are actually at an early stage of MCI [78]. MCI patients were not

correctly classified against patients with other pathologies. It is not very surprising that we

failed to classify properly all these pathologies from the MCI stage, which could be caused by

several different underlying mechanisms. Moreover, there would be a large overlap between

the EEG signatures of these two groups due to causal heterogeneity in the “Other pathologies”

group. A larger database would probably be necessary and other EEG features should be

investigated.

In future work, we will focus the study of differential AD diagnosis on MCI patients in

order to recover the best descriptors of this group of patients. We will also apply the methodol-

ogy described in this paper on the other EEG data collected at Charles-Foix hospital to study

the effectiveness of our method to discriminate, in blind manner, the different groups of

patients.
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